Tag Archives: scientific research

Moments in Research: A Poster Series

I love poster design. I love decorating my house with See America and WPA posters; I love designing posters about my passions. I haven’t posted any science designs because I find science hard to illustrate. I see lots of designs with beakers and test tubes, atoms, lab coats, and petri dishes. The challenge is that these are the tools of science, but they aren’t what makes science exciting. Science occurs between the ears, and the standards symbols are just tools of the craft. But how do you make posters of people thinking? Even the WPA posters promoting math-related careers are pretty listless, and that is a series of posters that used dinosaurs to promote syphilis treatment.

It occurred to me that the unifying thread of scientific inquiry are the highs, lows, and puzzlements of research. My friends in mechanical engineering have little need for beakers or lab coats, while my friends in biology aren’t (usually) immersed in coding. Different disciplines use different tools, but every discipline knows the elation of a published paper or the frustration of explaining what the heck it is you research to granny.

So, this inspiration broke my science poster designer’s block. I have three designs, but ideas for many more. For the style, I was inspired by World War I illustrator Lucien Laforge. There will be more, but I’m pleased with the start!


Turing Patterns: What do a leopard’s spots, vegetation in arid zones, and the formation of fingers have in common?

Please excuse my inconsistent posting of late, I have been deep down the rabbit hole of science. Last week, I attended the Society of Industrial and Applied Math (SIAM) dynamical systems conference. What fun!

I learned about Turing Patterns, named for mathematician Alan Turing. Complex patterns can arise from the balance between the diffusion of chemicals and the reaction of those chemicals. For this reason, Turing’s model is also called the Reaction-Diffusion model. In general, these kinds of patterns can arise when there’s some kind of competition.

This sounds abstract, but suspected examples in nature abound. Have you ever wondered how the leopard got his spots or what’s behind the patterns on seashells? We often don’t know the chemical mechanisms that produce the patterns, but we can mathematically reproduce them with generic models.

Image from wired.com discussion of Turing patterns.

Mary Silber and her grad student Karna Gowda presented research on Turing patterns in the vegetation of arid regions. When there isn’t enough precipitation to support uniform vegetation, what vegetation will you observe? If there’s too little water, their model yields a vegetation-free desert. Between “not enough” and “plenty” the model generates patterns, from spots to labyrinths to gaps. Their work expands at least two decades worth of study of Turing patterns in vegetation.


Figure by Karna Gowda, see the full article at SIAM news.

Silber and Gowda considered an area in the Horn of Africa (the bit that juts east below the Middle East). Here, stable patterns in the vegetation have been documented since the 1950s. They wanted to know how the patterns have changed with time. Have the wavelengths between vegetation bands changed? Are there signs of distress due to climate change? By comparing pictures taken by the RAF in the 1950s to recent satellite images, they found that the pattern were remarkably stable. The bands slowly travelled uphill, but they had the same wavelength and the same pattern. They only observed damage in areas with lots of new roads.


From google maps of the Horn of Africa! I screen-capped this from here.

Turing patterns have even been studied experimentally in zebrafish. Zebrafish stripes might appear stationary, but they will slowly change in response to perturbations. So scientists did just. Below is a figure from the paper. The left shows the pattern on the zebrafish, the right shows the predictions of the model.


Experimental perturbations to the patterns of zebrafish are well-predicted by the Turing model. Read more in this excellent Science paper.

The model has been used to explain the distribution of feather buds in chicks and hair follicles in mice. Turing’s equations have even been used to explain how fingers form.

If you want to learn more, the links above are a great start. And if you want to play with the patterns yourself, check out this super fun interactive. These waves aren’t stationary like the Turing patterns I described here, but they arise from similar mathematics. The interactive can make your computer work, fyi.


Reaction-diffusion pattern I generated with this online interactive. It’s super fun!

Fun Science: Network Theory and Graphs

If you have a set of items and you can connect or sequence them in many ways, you probably have a graph or network. Clearly if you have these objects, some connection arrangements might be preferable to others. Heart cells are connected in patterns that contract the heart in the proper pattern. If you must deliver items to ten different locations, different paths may be more efficient (the traveling salesman problem).

Euler’s 1735 Koenigsberg bridge problem is considered the first graph theory problem. At the time, the city of Koenigsberg had seven bridges (shown above). Euler wished to find a path which crossed each bridge exactly once. He showed mathematically that no path satisfied those constraints.

The famous game “six degrees of Kevin Bacon” is a network theory problem. This game says that with six steps, any actor can be linked to Kevin Bacon through films pairs of actors appeared in. This idea was originally introduced at the Erdös number. Paul Erdös was a brilliant and highly published mathematician (over 1500 papers!) who worked in graph theory and combinatorics. The Erdös number was how many papers it took by coauthoring to connect you to Erdös. He was also wonderfully eccentric. Once, visiting a friend, he woke in the night to get some juice. In the morning, his friend found red liquid all over the floor. Erdös, puzzled by the juice carton, had simply stabbed a hole in the side to drink from. His biography is a fascinating glimpse into a nearly alien mind.

In my own research, I look at how oscillators synchronize in small networks, such as rings. Even in a simple ring, many new types of synchrony occur, compared to all-to-all connections. It is easy to believe that the structure of the brain, and how various regions and subregions connect, might greatly influence human thinking. On a more science fiction note, I suspect that artificial intelligence will not exist in machines without complex networks of elements.

This was just a very quick overview of a huge field. In the future, I plan to write on topics like small-world networks, scale-free networks, and synchrony on networks. Check out my other science posts on synchrony, fractals, the Mandelbrot set, and chaos.